

Physical Inorganic Chemistry CH3514 Dr Eli Zysman-Colman

1

Physical Inorganic Chemistry CH3514

Dr Eli Zysman-Colman

Rm 244 in Purdie

eli.zysman-colman@st-andrews.ac.uk

http://www.zysman-colman.com/courses/ch3514_2017aut_en.php

VACATION RELAXATION?

Physical Inorganic Chemistry CH3514

Dr Eli Zysman-Colman

Rm 244 in Purdie

eli.zysman-colman@st-andrews.ac.uk

http://www.zysman-colman.com/courses/ch3514_2017aut_en.php

THE Zysman-Colman GROUP														
Orospie & Oro	nanometallic	Ontool	orteopie libited	ate a										
About Eli	Research	-	Publications	-	Prospective Students	÷	The Team 💌	Tour the lab	-	Teaching	Useful Links	intranet 💌	Contact Us	
Home														

Important Announcements

Welcome to the Physical Inorganic Chemistry course Module page

Class hours: 16h-17h every Monday and 14h-15h every Friday of the semester. The Physical Inorganic Chemistry module starts 10/10/2016 and continues to 11/18/2016. Please see calendar on main teaching page for my specific teaching obligations throughout the semester.

Module Outline

Module 2: Physical Inorganic Chemistry

Module Notes

Module slides (updated course slides to arrive shortly)

Sample questions

· Sample questions shown in class (to be made available after they are shown in class)

Physical Inorganic Chemistry CH3514

Dr Eli Zysman-Colman

Rm 244 in Purdie

eli.zysman-colman@st-andrews.ac.uk

http://www.zysman-colman.com/courses/ch3514_2017aut_en.php

4

Course Outline

Physical Chemistry and Bonding of Transition Metals

Aims: A continuation of the chemistry of the 3d transition metals with particular focus on the thermodynamics, bonding and kinetics of reactions.

Course Outline

Physical Chemistry and Bonding of Transition Metals

Objectives:

- A summary of how d-orbitals affect the properties of the transition metals.
- To understand metal ion-ligand complexation equilibria; stepwise formation and overall stability constants. Relationship of β_{ML} to K_{ML} and ΔG^{o}_{ML}
- To understand the trends in β_{ML} across the period Sc Zn and the Irving Williams maximum at Cu²⁺ due to Jahn-Teller effect at d⁹
- To understand how molecular orbital theory can be used to explain the properties of metal-ligand complexes
- To understand the origins of the chelate effect the increase in β_{ML} with chelate ligands. To appreciate and rationalise the entropic and enthalpic factors involved trends across the period. Correlation of $K_n(\beta_n)$ values with LFSE.
- To appreciate that thermodynamic stability and kinetic lability are independent phenomena not necessarily correlated. Equilibrium can be rapidly obtained irrespective of the size of K.
- To appreciate the range of labilities on 3d aqua metal ions and the correlation with LFSE. Definition of the terms inert and labile. Correlation of inertness with high LFAE – linked to LFSE.

Resource Books

Inorganic Chemistry, 6th Edition Mark Weller, Tina Overton, Jonathan Rourke and Fraser Armstrong

Inorganic Chemistry, 4th Edition Catherine Housecroft and Alan Sharpe

Frontier MO's of σ -Donor, π -Donor and π -Acceptor Ligands

Before we can understand MO diagrams and bonding in complexes, we must understand the nature of the frontier MOs of ligands.

There are three types of orbital interactions between ligands and metals, which define the ligand type:

- σ-donors
- π-donors
- *π*-acceptors

8

These ligands donate two e^{-s} from an orbital of σ -symmetry:

Examples include: H⁻, CH₃⁻, NR₃, PR₃, OH₂.

Let's look at NH₃ in more detail as an example of a molecular ligand (as opposed to a simple atomic ligand)

These ligands donate two e^{-s} from an orbital of σ -symmetry:

Examples include: H⁻, CH₃⁻, NR₃, PR₃, OH₂.

Let's look at NH₃ in more detail as an example of a molecular ligand (as opposed to a simple atomic ligand) Let's analyze the Symmetry Adapted Linear Combinations (SALC) more closely.

10

11

These ligands donate two e^{-s} from an orbital of σ -symmetry:

Examples include: H⁻, CH₃⁻, NR₃, PR₃, OH₂.

Let's look at NH₃ in more detail as an example of a molecular ligand (as opposed to a simple atomic ligand) Let's determine the Linear Combinations of Atomic Orbitals (LCAO)s

Frontier MO's of σ -Donor Ligands

CH3514

Let's look at NH₃ in more detail as an example of a molecular ligand (as opposed to a simple atomic ligand)

Let's now look at the MO diagram

^{University} St Andrews In addition to donating electron density to a metal via a σ -bond, CH3514 e⁻s may be provided to the metal via a π -symmetry interaction.

 π -donor ligands include X⁻ (halide), amide (NR₂⁻), sulfide (S²⁻), oxide (O²⁻), alkoxide (RO⁻) η^3 -C₃H₅, η^5 -C₅H₅, η^6 -C₆H₆

Frontier MO's of π -Acceptor Ligands

This class of ligands donates e^{-s} from a σ orbital

CH3514 and these ligands accept e⁻s from the metal into an empty π^* orbital.

CO is the archetype of this ligand class. Other π -acceptors are NO⁺, CN⁻, CNR, H₂, C₂H₄, N₂, O₂, PR₃, BR₂

 σ -donation

this orbital interaction responsible for designation of these ligands as π -acids

Frontier MO's of π -Acceptor Ligands

This class of ligands donates e^{-s} from a σ orbital

CH3514 and these ligands accept e⁻s from the metal into an empty π^* orbital.

CO is the archetype of this ligand class. Other π -acceptors are NO⁺, CN⁻, CNR.

the HOMO is filled and of σ -symmetry, the LUMO is empty and of π^* symmetry

Electronic Structure and Properties of Complexes: Crystal Field Theory

^{CH3514} Two theories are commonly used to rationalize electronic structure

- Crystal Field Theory (emerged from an analysis of the spectra of d-metal ions in the solid)
- Ligand Field Theory (emerged from an application of MO theory to d-metal complexes)

CFT Assumptions

- Complexes held together via electrostatic forces between the positively charged metal and the negatively charged or polarized ligands
- Models interactions based on electrostatics with the valence electrons of the metal in the d-orbitals and the ligands as negative charges (ion-ion interactions) or dipoles (ion-dipole) interactions (IONIC bonding model)
- Stronger interactions between electrons of the metal and the ligands result in greater destabilization
- The energy difference of d-orbitals correlates with the optical, magnetic and thermodynamic properties of the complex

Electronic Structure and Properties of Complexes: Crystal Field Theory

Electronic Structure and Properties of Complexes: Crystal Field Theory – Octahedral Complex

- The energy difference between the two sets of orbitals is the crystal field splitting energy denoted Δ_0 (or $10D_q$)
- The e_g orbitals are raised in energy
- The t_{2g} orbitals are lowered in energy

Electronic Structure and Properties of Complexes: Crystal Field Theory Limitations & MO (LFT) Theory

Questions for which Crystal Field Theory has no answers:

- Why is $KMnO_4$ with Mn^{7+} and no d-electrons coloured?
- Why is OH⁻ a weaker field ligand that H₂O?
- Why are neutral ligands like CO, which are otherwise very poor Lewis bases such strong field ligands?
- Why in EPR spectra of high spin complexes is there hyperfine splitting, indicating that the spin is delocalized onto the ligands?

MO (LFT) Theory

The interaction of the frontier atomic (for single atom ligands) or

CH3514 molecular (for many atom ligands) orbitals of the ligand and metal lead to bond formation

Some important points:

- M—L atomic orbital mixing is proportional to the overlap of the metal and ligand orbital (S_{ML})
- Owing to more directional bonding (greater overlap) along the series $S_{ML}(\sigma) > S_{ML}(\pi) > S_{ML}(\delta)$, which leads to greater splitting along the series
- M–L atomic orbital mixing is inversely proportional to energy difference of mixing orbitals (i.e. ΔE_{ML})
- Only orbitals of correct symmetry can mix and the total MOs = sum of the precursor orbitals
- The order of the E_L and E_M energy levels almost always is:

$$\sigma(L) < \pi(L) < nd < (n+1)s < (n+1)p$$

 $\mu \pi^*L \longrightarrow$
depending on the nature of the ligand

MO (LFT) Theory

The interaction of the frontier atomic (for single atom ligands) or

CH3514 molecular (for many atom ligands) orbitals of the ligand and metal lead to bond formation

Some general observations:

- The s orbitals of L's are generally too low in energy to participate in bonding ($\Delta E_{ML}(\sigma)$ is very large)
- Filled p orbitals of L's are the frontier orbitals, and they have IEs that place them below the metal orbitals
- For molecular L's, whose frontier orbitals comprises and p orbitals, here too filled ligand orbitals have energies that are stabilized relative to the metal orbitals
- Ligand orbital energy increases with decreasing E_{neg} of Lewis basic bonding atom $E(CH_3^-) > E(NH_2^-) > E(OH^-)$
- M orbital energy decreases with increase oxidation state of metal, as you go down the periodic table and as you go from left to right on the periodic table

MO (LFT) Theory

The interaction of the frontier atomic (for single atom ligands) or

University of St Andrews

1

molecular (for many atom ligands) orbitals of the ligand and metal lead to bond formation CH3514 18

1	H 1312.0	2	375.7 kJ/mol 2372.3 kJ/mol 1:											14	15	16	17	He 2372.3
2	Li 520.2	Be 899.5						B 800.6	C 1086.5	N 1402.3	O 1313.9	F 1681.0	Ne 2080.7					
3	Na 495.8	Mg 737.7	3	4	5	6	7	8	9	10	11	12	AI 577.5	Si 786.5	P 1011.8	S 999.6	CI 1251.2	Ar 1520.6
4	K 418.8	Ca 589.8	Sc 633.1	Ti 658.8	V 650.9	Cr 652.9	Mn 717.3	Fe 762.5	Co 760.4	Ni 737.1	Cu 745.5	Zn 906.4	Ga 578.8	Ge 762.2	As 944.5	Se 941.0	Br 1139.9	Kr 1350.8
5	Rb 403.0	Sr 549.5	2 nd	1309	1414	1592	1509	1561	1644	1752	1958	Cd 867.8	In 558.3	Sn 708.6	Sb 830.6	Te 869.3	I 1008.4	Xe 1170.3
6	Cs 375.7	Ba 502.9	3 rd 4 th	2650 4173	2828 4600	3056 4900	3251 5020	2956 5510	3231 5114	3489 5404	3954 5683	Hg 1007.1	TI 589.4	Pb 715.6	Bi 703.0	Po 812.1	At	Rn 1037.1
7	Fr 393.0	Ra 509.3	Ac 498.8	Rf 580	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
	Lanthanides 6			Ce 534.4	Pr 528.1	Nd 533.1	Pm 538.6	Sm 544.5	Eu 547.1	Gd 593.4	Tb 565.8	Dy 573.0	Ho 581.0	Er 589.3	Tm 596.7	Yb 603.4	Lu 523.5	
			Actinides 7	Th 608.5	Pa 568	U 597.6	Np 604.5	Pu 581.4	Am 576.4	Cm 578.1	Bk 598.0	Cf 606.1	Es 619	Fm 627	Md 635	No 642	Lr 472.8	

Electronic Structure and Properties of Complexes: LFT Theory

What is Ligand Field Theory?

It is:

- A semi-empirical theory that applies to a <u>class of substances</u> (transition metal complexes)
- A language in which a vast number of experimental observations can be rationalized and discussed
- A model that applies only to a restricted part of reality

It is not:

- An *ab initio* theory that lets one predict the properties of a compound
- A physically rigorous treatment of the electronic structure of transition metal complexes

Electronic Structure and Properties of Complexes: LFT Theory

Sigma (σ) bonding

- Neutral ligands (e.g., NH₃) or anionic ligands (e.g., F⁻) possess lone pairs that can bond to metal-based orbitals (s, p_x, p_y, p_z, d_{xy}, d_{yz}, d_{xz}, d_{x2-y2}, d_{z2}) with σ-symmetry
- In an O_h complex, 6 symmetry-adapted linear combinations (SALCs) of the 6 ligand σ -symmetry orbitals can be formed
- MOs for the resulting complex are formed by combining the ligand SALCs and the metalbased d-orbitals of the same symmetry type
- With 6 SALCs combined with the metal MOs, we will get 6 bonding and 6 antibonding MOs – now called ligand group orbitals (LGOs)
- The resulting MO diagram now gets populated with the electrons according to the Aufbau process, Pauli exclusion principle and Hund's rule

Sigma (σ) bonding: Simple example showing interaction of ligand s-orbitals with metalbased orbitals

Sigma (σ) bonding: Simple example showing interaction of ligand s-orbitals with metalbased orbitals

not proper symmetry so no interaction

CH3514

Sigma (σ) bonding:

- For most ligands, their SALCs are lower in energy than the metal-based d-orbitals
- Therefore the 6 bonding MOs of the complex will be mostly ligand-based in character
- The d-electrons of the metal will occupy the *same* orbitals as in CFT
- Unlike CFT, the t_{2g} orbitals are non-bonding and the e_g orbitals are anti-bonding

CH3514

Example

Take $[Co(NH_3)_6]^{3+}$ NH₃ can σ -bond through its lone pair

To summarize:

- Of 9 valence orbitals (5x d, 3x p, 1x s) only 6 are suitable for σ-bonding
- The combination of orbitals from ligands and from metal are called
 Ligand Group Orbitals (LGOs)
- The Δ_0 here is the same as in CFT
- Co³⁺ is d⁶ and there are 12e⁻ from the 6 NH₃ ligands
- As this is a diamagnetic
 LS complex, the
 6-d electrons occupy
 only the t_{2g} set

Pi (π) bonding:

- The previous MO diagram ignores π bonding. If the ligands possess orbitals of local πsymmetry then these can interact with the metal d-orbitals with the same symmetry (i.e. the t_{2g} set) to form new LGOs
- These ligand SALCs can act as electron donors (populated) or electron acceptors (vacant)

Pi (π) bonding:

- The previous MO diagram ignores π bonding. If the ligands possess orbitals of local πsymmetry then these can interact with the metal d-orbitals with the same symmetry (i.e. the t_{2g} set) to form new LGOs
- These ligand SALCs can act as electron donors (populated) or electron acceptors (vacant)
- The nature of this secondary interaction will affect Δ_{o}

Ligands that are π donors decrease Δ_0 .

Ligands that are π acceptors increase Δ_0 .

CH3514

The Cl⁻ p orbitals can now interact with the Fe t_{2g} , which are destabilized

These complexes are now largely high spin

 t_{2g} and e_{g}

Pi (π) donor ligands: (aka π -bases)

Example Take [FeCl₆]³⁻

Cl can σ -bond through its lone pair AND π -bond through its p-orbitals

The Cl⁻ p orbitals can now interact with the Fe t_{2g} , which are destabilized

These complexes are now largely high spin

Electronic Structure and Properties of Complexes: LFT Theory – Octahedral Complexes

Pi (π) acceptor ligands:

(aka π -acids)

Example Take $[Cr(CO)_6]$

CO can σ -bond through its lone pair on C AND π -bond through its p-orbitals AND its π^* orbitals can form bonding interactions with metal d orbitals

Electronic Structure and Properties of Complexes: Crystal Field Theory Limitations & MO (LFT) Theory

Summary: π -bonding and π -back bonding modulate the energy of the metal t_{2g} orbitals

MO (LFT) Theory

Summary: π -bonding and π -back bonding modulate the energy of the metal t_{2g} orbitals

MO (LFT) Theory: A Quick Look at Square Planar Complexes

How would the octahedral MO diagram be perturbed if we removed the axial ligands?

CH3514

Example Take $[Pd(NH_3)_4]^{2+}$

i.e. only $\sigma\text{-donation}$

The d_{x2-y2} MO (b_{1g}) contains very strong metal–ligand antibonding interactions in the xy plane. It is the **LUMO**

The d_{z2} MO (a_{1g}) contains slight metal–ligand antibonding interactions in the xy plane. It is the **HOMO**

The d_{xy} , d_{xz} , d_{yz} , MO (e_g , b_{2g}) are normally presented as degenerate and non-bonding (no symmetry match with ligand MOs)

MO (LFT) Theory: A Quick Look at Square Planar Complexes

How would the octahedral MO diagram be perturbed if we removed the axial ligands?

What about ligands with π -character?

Including π -interactions results in a re-ordering of the energies of the MOs, unlike what we saw with O_h complexes.

For complexes with p-donating ligands, the HOMO is the e_g MOs and not the a_{1g} MO as a result of the destabilization from π -antibonding interactions with the lone pairs of the ligands.

In addition, the a_{1g} MO is energetically stabilized, due to the weak σ -donating properties of ligands interacting with the metal d_{z2} orbital

 $[PdCl_4]^{2-}$ $[Pd(CN)_4]^{2-}$ **▲** Ε $b_{1g} (d_{x^2-y^2})$ $b_{1g} (d_{x^2-y^2})$ номо 🕂 $e_{g} \left(d_{xz} , d_{yz} \right)$ номо 🕂 a10 (d-2) $a_{1g} (d_{z^2})$ $b_{2a} (d_{xv})$ $e_{g}(d_{xz}, d_{vz})$ $b_{2q} (d_{xv})$

Water – The Most Fundamental Ligand

CH3514

Since water can be viewed as the most fundamental ligand we will use aqueous solutions and the species found therein as the basis for exploring the chemistry

A Summary of Metal Aqua Complexes

CH	13	5	1	4	

CH3514		II	III	IV	V	VI	VII
	Sc	-	$[Sc(OH_2)_7]^{3+} \\ d^0$				
	Ti	[Ti(OH ₂) ₆] ²⁺ d ²	[Ti(OH ₂) ₆] ³⁺ d ¹				
green – stable	V	$[V(OH_2)_6]^{2+}$ d ³	$[V(OH_2)_6]^{3+}$ d ²	$[VO(OH_2)_5]^{2+}$ d ¹	$\frac{[VO_2(OH_2)_4]^+}{[VO_4]^{3-}}$ d ⁰		
red – reducing blue – oxidising	Cr	[Cr(OH ₂) ₆] ²⁺ d ⁴	$[Cr(OH_2)_6]^{3+}$ d ³	$[CrO(OH_2)_5]^2$ + d ²		$\frac{[Cr_{2}O_{7}]^{2}}{[CrO_{4}]^{2}}$ d^{0}	
purple - metastable	Mn	$[Mn(OH_2)_6]^{2+}$ d ⁵	[Mn(OH ₂) ₆] ³⁺ d ⁴	-	[MnO ₄] ³⁻ d ²	[MnO ₄] ²⁻ d ¹	[MnO ₄] ⁻ d ⁰
	Fe	[Fe(OH ₂) ₆] ²⁺ d ⁶	[Fe(OH ₂) ₆] ³⁺ d ⁵	[FeO(OH ₂) ₅] ²⁺ d ⁴		[FeO ₄] ²⁻ d ²	
	Co	$[Co(OH_2)_6]^{2+}$ d ⁷	[Co(OH ₂) ₆] ³⁺ d ⁶	-			
	Ni	$[Ni(OH_2)_6]^{2+} \\ d^8$	-	-			
	Cu	$[Cu(OH_2)_n]^{2+}$ d ⁹ (n = 5 or 6)	-	-			
	Zn	$[Zn(OH_2)_6]^{2+} d^{10}$	-	-			

Coordination Geometries

Common

CH3514

octahedral

tetrahedral

Coordination Geometries

Unusual

CH3514

 $Cu^{2+} d^9$

rapid interconversion between 5 and 6 coordination

Hydrolysis Chemistry

Why does Mn^{\parallel} exist as an aqua complex $[Mn(OH_2)_6]^{2+}$ while $Mn^{\vee\parallel}$ exists as an oxo complex $[MnO_4]^-$?

octahedral

tetrahedral

The Clue lies in the acid-base chemistry

Hydrolysis Chemistry

- The metal acts as a LA. When H₂O complexes to the metal, the O-H bond is polarized and the proton becomes acidic and so can be abstracted by solvent molecules
- As the charge density increases on the metal, the O-H bond becomes more polarized and the proton acidity increases and more protons are abstracted into solution and the OH₂ ligand becomes an OH⁻ ligand, reducing the overall charge of the complex.
- The solution thus becomes more acidic

$$\begin{split} \mathsf{M}^{2+} & [\mathsf{M}(\mathsf{H}_2\mathsf{O})_6]^{2+}(\mathrm{aq}) + \mathsf{H}_2\mathsf{O}(\mathrm{I}) \xleftarrow{} [\mathsf{M}(\mathsf{H}_2\mathsf{O})_5(\mathsf{O}\mathsf{H})]^+(\mathrm{aq}) + \mathsf{H}_3\mathsf{O}^+(\mathrm{aq}) \\ & \mathsf{Hydrolysis\,reaction} \\ \mathsf{M}^{3+} & [\mathsf{M}(\mathsf{H}_2\mathsf{O})_6]^{3+}(\mathrm{aq}) + \mathsf{H}_2\mathsf{O}(\mathrm{I}) \xleftarrow{} [\mathsf{M}(\mathsf{H}_2\mathsf{O})_5(\mathsf{O}\mathsf{H})]^{2+}(\mathrm{aq}) + \mathsf{H}_3\mathsf{O}^+(\mathrm{aq}) \\ \end{split}$$

• If now a stronger LB is used then more and more protons can be abstracted from metal aqua complexes

 $[M(H_2O)_6]^{2+}(aq) \iff [M(OH)(H_2O)_5]^{+}(aq) \iff [M(OH)_2(H_2O)_4](s) \iff$

 $[M(OH)_3(H_2O)_3]_{(aq)}(aq) \implies [M(OH)_4(H_2O)_2]^{2^-}(aq) \implies M(OH)_5(H_2O)]^{3^-}(aq)$

─── [M(OH)₆]^{4−}(aq)

	ADD BASE - EQUILIBRIUM MOVES TO THE RIGHT ADD ACID - EQUILIBRIUM MOVES TO THE LEFT	
M ²⁺	$[M(H_2O)_6]^{2+}(aq) + H_2O(l) = [M(H_2O)_5(OH)]^{+}(aq) + H_3O(l)$	+ (aq)
	Hydrolysis reaction	
М ³⁺	$[M(H_2O)_6]^{3+}(aq) + H_2O(I) = [M(H_2O)_5(OH)]^{2+}(aq) + H_3$	O+ (aq)

Hydrolysis Chemistry

We can determine the relative acidities of $[M(OH_2)_6]^{2+}$ and $[M(OH_2)_6]^{3+}$ ions can be seen below in terms of the respective pKa values

For Fe species: $[M(OH_{2})_{6}]^{n+} + H_{2}O \xrightarrow{K_{a}} [M(OH_{2})_{5}OH]^{(n-1)+} + H_{3}O^{+}$ $K_{a} = \frac{[M(OH_{2})_{5}OH^{(n-1)+}][H_{3}O^{+}]}{[M(OH_{2})_{6}^{n+}]} pK_{a} = -\log_{10}K_{a}$ $Fe^{2+} pK_{a} = 9.5$ $Fe^{3+} pK_{a} = 2.2$

The pK_a for $[Fe(OH_2)_6]^{3+}$ is similar to that of formic acid (2.0) – it will liberate CO_2 from carbonate

Hydrolysis Chemistry – pKa Trends

Empirical relationship that is also based on the electronegativity of the metal

$$pK_a = 15.14 - 0.8816 \left\{ \frac{Z^2}{r} + 9.60 \left(\chi_{Pauling} - 1.50 \right) \right\}$$

Hydrolysis Chemistry

If we increase the oxidation state on the metal further (and hence the charge density) we can even render the proton of the hydroxide ligand, O-H⁻acidic

As the oxidation state on the metal increases further we can obtain multiple oxo groups

Oxo groups possess other traits that help to stabilize the resulting metal complex

- O²⁻ helps to neutralize high charge on the metal from high OS
- For metals with low d-electron count, strong π -donor ability helps to stabilize t_{2g} orbital

Hydrolysis Chemistry

A further reaction can take place with the trivalent hydroxo ions. They can 'condense' together in a process called 'hydrolytic polymerisation'

Here the OH⁻ ligand retains a degree of nucleophilicity and substitutes a water on an adjacent ion

dimer

Hydrolysis Chemistry

This process can continue - building up huge OH^{-} bridged polynuclear structures until solubility limits are exceeded resulting in precipitation of the hydroxide; $M(OH)_{3}$ aq.

Accompanying dehydration can also occur leading to oxy-hydroxide or oxide (M_2O_3) forms precipitating

Fe(III) hydrolysis has been well studied and polymeric nanostructures containing over 100 iron atoms have been characterized before $Fe(OH)_3$ precipitation.

Structure of a Fe₁₉ cluster with triply oxide and hydroxide bridges and doubly bridging hydroxides

Hydrolysis Chemistry Fe Hydrolysis in Action *in vivo*

Ferritin is a protein that stores iron in our body by concentrating it via controlled hydrolysis of Fe³⁺ aq to yield huge oxy-hydroxy bridged nanostructures containing up to 4500 iron atoms.

Movement of iron in and out of the protein is achieved via reduction to Fe^{2+}_{aq} which doesn't hydrolyse at pH 7 and passes through specific M^{2+} -sensing channels

Hydrolysis Chemistry Fe Hydrolysis in Action *in vivo*

CH3514

Ferritin is a protein that stores iron in our body by concentrating it via controlled hydrolysis of Fe³⁺aq to yield huge oxy-hydroxy bridged nanostructures containing up to 4500 iron atoms.

Hydrolysis Chemistry Fe Hydrolysis in Action *in vivo*

The instability of Fe³⁺ aq solutions at pH 7 with respect to hydrolysis to insoluble Fe(OH)₃ ($K_{sp} = 2.6 \times 10^{-39}$) makes it a challenge for biology to concentrate iron in the body.

$K_{sp} = [Fe^{3+}_{aq}] [OH^{-}]^{3}$

To achieve this, Nature has evolved very powerful agents that bind and solubilize all forms of Fe(III) even Fe(OH)₃ to enable efficient iron uptake. These compounds are called **siderophores** (*Greek- iron carrier*)

Some of these have the highest measured equilibrium constants for a metal ion - ligand combination. The record value is held by enterobactin

Hydrolysis Chemistry Fe Hydrolysis in Action *in vivo*

siderophore	donor set	log K
aerobactin	hydroxamate, carboxylate	22.5
coprogen	hydroxamate	30.2
deferrioxamine B	hydroxamate	30.5
ferrichrome	hydroxamate	32.0
Enterobactin	catecholate	49.0

CH3514

reaction coordinate (progress of reaction)

Let's look at ligand exchange in more detail by looking at

 $[M(OH_2)_6]^{n+} + mL \rightarrow [M(OH_2)_{6-m}mL]^{n+} \rightarrow \rightarrow [M(L)_6]^{n+} (L \text{ is a neutral ligand})$

$$[M(OH_{2})_{6}]^{n+} + L \xrightarrow{K_{1}} [M(OH_{2})_{5}L]^{n+} + H_{2}O \quad K_{1} = \frac{[M(OH_{2})_{5}L^{n+}]}{[M(OH_{2})_{6}^{n+}][L]}$$

$$[M(OH_{2})_{5}L]^{n+} + L \xrightarrow{K_{2}} [M(OH_{2})_{4}L_{2}]^{n+} + H_{2}O \quad K_{2} = \frac{[M(OH_{2})_{4}L_{2}^{n+}]}{[M(OH_{2})_{5}L^{n+}][L]}$$

$$[M(OH_{2})L_{5}]^{n+} + L \xrightarrow{K_{6}} [ML_{6}]^{n+} + H_{2}O \quad K_{6} = \frac{[ML_{6}^{n+}]}{[M(OH_{2})L_{5}^{n+}][L]}$$

K₁-K₆ are know as stepwise stability constants

Let's look at ligand exchange in more detail by looking at $[M(OH_2)_6]^{n+} + mL \rightarrow [M(OH_2)_{6-m}mL]^{n+} \rightarrow \rightarrow [M(L)_6]^{n+} (L \text{ is a neutral ligand})$

We an define an overall stability constant, β , for the complete exchange of H₂O ligands for L

$$[\mathsf{M}(\mathsf{OH}_2)_6]^{\mathsf{n}^+} + 6\mathsf{L} \underbrace{\overset{\beta_6}{\longrightarrow}}_{[\mathsf{M}\mathsf{L}_6]^{\mathsf{n}^+}} + 6\mathsf{H}_2\mathsf{O} \qquad \beta_6 = \frac{[\mathsf{M}\mathsf{L}_6^{\mathsf{n}^+}]}{[\mathsf{M}(\mathsf{OH}_2)_6^{\mathsf{n}^+}][\mathsf{L}]^6}$$

$$\beta_6 = \mathsf{K}_1^*\mathsf{K}_2^*\mathsf{K}_3^*\mathsf{K}_4^*\mathsf{K}_5^*\mathsf{K}_6$$

$$\log(\beta_6) = \log(\mathsf{K}_1) + \log(\mathsf{K}_2) + \log(\mathsf{K}_3) + \log(\mathsf{K}_4) + \log(\mathsf{K}_5) + \log(\mathsf{K}_6)$$

What this implies is that $\beta_6 > \beta_5 > \beta_4 > \beta_3 > \beta_2 > \beta_1$ and so there will always be complete substitution of L for H_2O

CH3314

An example: NH_3 replacing H_2O on $[Ni(OH_2)_6]^{2+}$

-Log K ₁	-Log K ₂	-Log K ₃	-Log K ₄	-Log K ₅	-Log K ₆
-2.79	-2.26	-1.69	-1.25	-0.74	-0.03

Note the steady fall in K_n

What this data means is that $[Ni(OH_2)_6]^{2+}$ + excess NH_3 gives only $[Ni(NH_3)_6]^{2+}$

 $\label{eq:beta_basis} \begin{array}{l} \text{Log} \ \beta_6 = 2.79 + 2.26 + 1.69 + 1.25 + 0.74 + 0.03 = 8.76 \\ \beta_6 = 5.75 \ x \ 10^8 \end{array}$

An example: NH_3 replacing H_2O on $[Ni(OH_2)_6]^{2+}$

With known equilibrium constants, K_n , we can determine free energy ΔG_n

 $\Delta G_n = -RT \ln(K_n)$, where R is the gas constant 8.314 J mol⁻¹ K⁻¹

So at 303 K, $\Delta G_1 = -(8.314 \times 10^{-3} * 303) \ln(10^{2.79}) = -16.2 \text{ KJ mol}^{-1}$

 $\Delta G_n = \Delta H_n - T\Delta S_n$

If $\Delta H_1 = -16.8 \text{ KJ mol}^{-1}$ $\Delta S_1 = (\Delta H_1 - \Delta G_1)/T = [-16.8 - (-16.2)]/303 = -1.98 \text{ J mol}^{-1} \text{ K}^{-1}$

Quite small – no change in # molecules

Therefore substitution is primarily an **enthalpic effect** (Δ H is governing the process) This is due to the stronger Ni²⁺-N bonds being formed compared to the Ni²⁺-O bonds (more exothermic)

Thermodynamics of metal complex formation HSAB Theory

An example: NH_3 replacing H_2O on $[Ni(OH_2)_6]^{2+}$

Now why is N a more preferred donor than O for Ni²⁺?

The answer lies in Hard-Soft Acid and Base Theory (HSAB)

Housecrott and Sharpe, Chapter 7, page 206

Thermodynamics of metal complex formation HSAB Theory

Salem-Klopman Equation (simplified)

Classification of L	ewis Acids.			
Class (a)/Hard	Class (b)/Soft			
H^+ , Li^+ , Na^+ , K^+ Ba^{2+} , Ma^{2+} , Ca^{2+} , Sr^{2+} , Sn^{2+}	$Cu^+, Ag^+, Au^+, Tl^+, Hg^-$ $Pd^{2+}, Cd^{2+}, Pt^{2+}, Hg^{2+}$	+, Cs+		
Al^{3+} , Se^{3+} , Ga^{3+} , In^{3+} , La^{3+}	CH ₃ Hg ⁺		Classificatio	on of Bases
Cr^{3+} , Co^{3+} , Fe^{3+} , As^{3+} , Ir^{3+} Si ⁴⁺ , Ti^{4+} , Zr^{4+} , Th^{4+} , Pu^{4+} , VO^{2+} UO^{2+} (CHa) Sn ²⁺	Tl^{3+} , $Tl(CH_3)_3$, RH_3 RS^+ , RSe^+ , RTe^+ l^+ Pr^+ HO^+ PO^+		Hard	Soft
$BeMe_2$, BF_3 , BCl_3 , $B(OR)_3$ Al(CH ₃) ₃ , Ga(CH ₃) ₃ , In(CH ₃) ₃ RPO ₇ ⁺ , ROPO ₇ ⁺	I', BI', HO', KO I ₂ , Br ₂ , INC, etc. Trinitrobenzene, etc. Chloranil, quinones, etc.	H_2O, O CH_3O Cl^-, O	OH ⁻ , F ⁻ O ₂ ⁻ , PO ₄ ³⁻ , SO ₄ ²⁻ CO ₂ ²⁻ , ClO ₇ , NO ₅ ⁻	R_2S , RSH, RS ⁻ I ⁻ , SCN ⁻ , $S_2O_3^{2-}$ R_2P , R_2As , (RO) ₂ P
RSO_{2}^{+} , $ROSO_{2}^{+}$, SO_{3} I^{7+} , I^{5+} , CI^{7+} $R_{3}C^{+}$, RCO^{+} , CO_{2} , NC^{+}	Tetracyanoethylene, etc. O, Cl, Br, I, R ₃ C M ⁰ (metal atoms) Bulk metals	ROH, NH ₃ ,	RO^- , R_2O RNH_2 , N_2H_4	CN^- , RNC, CO C_2H_4 , C_6H_6 H^- , R^-
HX (hydrogen-bonding molelcules)		Borderline		
Borderline Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Pb^{2+} $B(CH_3)_3$, SO_2 , NO^+		$C_6H_5NH_2, C_5H_5N, N_3^-, Br^-, NO_2^-, SO_3^{2-}, N_2$		

Copyright 2000 John Wiley and Sons, Inc.

CH3514

Thermodynamics of metal complex formation HSAB Theory

Salem-Klopman Equation (simplified)

Consider the following examples involving replacement of water by halide ions

$$\begin{array}{rcrcrc} & & K_1 \\ Fe^{3+}{}_{aq} + & X^- & & & & FeX^{2+}{}_{aq} + & H_2O \\ Hg^{2+}{}_{aq} + & X^- & & & & HgX^{2+}{}_{aq} + & H_2O \end{array}$$

Metal Ion	log ₁₀ K ₁									
	X = F	X = Cl	X = Br	X = I						
Fe^{3+}_{aq}	6.0	1.4	0.5							
Hg^{2+}_{aq}	1.0	6.7	8.9	12.9						

Note the vastly different trends in log K values!

	Thermodynamics of metal complex formation 74																
University of St Andrews	HSAB Theory																
CH3514	514 Fe ³⁺ aq is HARD The golden rule:																
	Hg ²⁺ aq is SOFT Strongest M-L interactions require HH or SS match hard intermediate soft																
н		nues	C N O F														
Li	Ве			hard intermediate soft AI Si									Ρ	S	СІ		
Na	Mg	Sc	Ті	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	As	Se	Br
к	Са	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Sb	Те	1
Rb	Sr	La	Hf	Та	w	Re Os Ir Pt Au Hg TI Pb Bi											
Cs	Ва							^		-							
			Me	etal lo	on					log	₁₀ K ₁						
				$X = F \qquad X = CI \qquad X = Br \qquad X = I$													

Note the vastly different trends in log K values!

1.4

6.7

0.5

8.9

12.9

 Fe^{3+}_{aq}

 ${\rm Hg^{2+}}_{\rm aq}$

6.0

1.0

	Thermodynamics of metal complex formation									75								
University of St Andrews	rews HSAB INEORY																	
CH3514	14 Fe ³⁺ aq is HARD The golden rule:																	
	Hg	²⁺ _{aq} i	s SO	FT	Stro	ngest	t M-L	. intei	ractic	ons re	equire	e HH	or SS	mat	ch _{hard}	interr	nediate	soft
	На	lides	get ł	narde	er as s	size g	ets si	malle	r									
н											0	F						
Li	Be				hard	l inter	media	te sof	t			A1	Si.			•	0	01
	56											AI	51		h	Р	5	CI
Na	Mg	Sc	Ті	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As		As	Se	Br
к	Са	Y	Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb								Sb	Те	Т					
Rb	Sr	La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi																
Cs	Ва			*											5			

The behaviour of Fe^{3+}_{aq} is paralleled by similar behaviour shown by the Group 1 and 2 metals and the early 3d transition elements to the left

The behaviour of Hg^{2+}_{aq} is paralleled by similar behaviour shown by the heavier p-block elements and the heavier transition elements to the right

	Thermodynamics of metal complex formation 76									76								
University	HSAB Theory																	
CH3514	⁵¹⁴ Fe ³⁺ aq is HARD The golden rule:																	
	Hg	²⁺ aq İ	s SO	FT .	Stro	ngest	t M-L	. intei	ractic	ons re	equire	e HH	or SS	mat	ch _{hard}	intern	nediate	soft
	На	lides	get i	harde	er as s	sizeg	ets si	malle	r						•		~	-
н		C N O F																
Li	Ве				hard	inter	media	te sof	t			AI	Si			Р	S	СІ
Na	Mg	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As		As	Se	Br
к	Са	Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Sb Te I								Т								
Rb	Sr	La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi																
Cs	Ва							*										

Order of increasing stability in complexes for **Hard** metal ions:

Order of increasing stability in complexes for **Soft** metal ions:

O >> S > Se > Te
N >> P > As > Sb
O << S > Se ~ Te
N << P > As > Sb

Order of decreasing hardness based on electronegativity: $F > O > N > CI > Br > C \sim I \sim S > Se > P > As > Sb$

Thermodynamics of metal complex formation HSAB Theory

CH3514

	Ligands (Lewis bases)	Metal centres (Lewis acids)
Hard, class (a)	F ⁻ , Cl ⁻ , H ₂ O, ROH, R ₂ O, OH ⁻ , RO ⁻ , RCO ₂ ⁻ , CO ₃ ²⁻ , NO ₃ ⁻ , PO ₄ ³⁻ , SO ₄ ²⁻ , ClO ₄ ⁻ , oxalate ²⁻	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Be ²⁺ , Mg ²⁺ , Sr ²⁺ , Sn ²⁺ , Mn ²⁺ , Al ³⁺ , Ga ³⁺ , In ³⁺ , Sc ³⁺ , Cr ³⁺ , Fe ³⁺ , Co ³⁺ , Y ³⁺ , La ³⁺ , Th ⁴⁺ , Pu ⁴⁺ , Ti ⁴⁺ , Zr ⁴⁺ , VO ²⁺ , VO ₂ ⁺
Soft, class (b)	I ⁻ , H ⁻ , R ⁻ , CN ⁻ , C-bound CO, C-bound RNC, RSH, R ₂ S, RS ⁻ , SCN ⁻ (S-bound), R ₃ P, R ₃ As, R ₃ Sb, alkenes, arenes	Zero oxidation state metals, Tl ⁺ , Cu ⁺ , Ag ⁺ , Au ⁺ , Hg ₂ ²⁺ , Hg ²⁺ , Cd ²⁺ , Pd ²⁺ , Pt ²⁺ , Tl ³⁺
Intermediate (borderline)	Br ⁻ , NH ₃ , N ₃ ⁻ , pyridine, SCN ⁻ (N-bound), RNH ₂ , ArNH ₂ , NO ₂ ⁻ , SO ₃ ²⁻	Pb ²⁺ , Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺ , Ru ³⁺ , Rh ³⁺ , Ir ³⁺

Order of increasing stability in complexes for **Hard** metal ions:

Order of increasing stability in complexes for **Soft** metal ions:

O >>> S > Se > Te
N >>> P > As > Sb
O << S > Se ~ Te
N << P > As > Sb

Order of decreasing hardness based on electronegativity:

$$F > O > N > CI > Br > C ~ I ~ S > Se > P > As > Sb$$

Thermodynamics of metal complex formation HSAB Theory

CH3514

Ligands displace water in a competitive process – not a simple combination

If the M^{n+} is a **hard** metal - it is already associated with **hard H₂O** ligands. Thus reaction with another hard ligand may not be favourable – only a small exothermic enthalpy effect might be seen.

Leads only to moderately stable complexes (- ΔG° small) e.g., with L = RCO₂⁻, F⁻, Cl⁻ etc.

Now if Mⁿ⁺ is a **soft** metal and **L** a **soft base** the reaction is now highly favoured since it removes two unfavourable soft-hard interactions - from water solvation

Here a significant ΔH° effect (large and negative) is seen when the soft-soft interaction results - leads to stable complexes with ΔG° that is also large and negative (ΔS° small as before) - high K_n

e.g., Hg^{2+}_{aq} and $S^{2-}_{aq} \rightarrow HgS(s)$ precipitates

Thermodynamics of metal complex formation

CH3514

We have examined the values of log $K_n(\beta_n)$ for the successive replacement of H_2O on Ni^{2+}_{aq} by NH_3

What happens along the 3d series from Sc - Zn?

Values of $\log_{10} K_1$ for NH₃ replacing water on $[M(OH_2)_6]^{2+}$

Electronic Structure and Properties of Complexes: Octahedral Complexes The Irving-Williams Series

The Irving-Williams Series (IWS) describes an empirical increase in stability of M²⁺ octahedral complexes as a function of atomic radius, regardless of the nature of L for the following reaction:

 $[M(H_2O)_n]^{2+} + L \implies [M(H_2O)_{n-1}L]^{2+} + H_2O$

 K_{f} varies along: $Ba^{2+} < Sr^{2+} < Ca^{2+} < Mg^{2+} < Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} > Zn^{2+}$

Trends in Atomic Radius

Electronic Structure and Properties of Complexes: Octahedral Complexes The Irving-Williams Series

The Irving-Williams Series (IWS) describes an empirical increase in stability of M²⁺ octahedral complexes as a function of atomic radius, regardless of the nature of L for the following reaction:

 $[M(H_2O)_n]^{2+} + L \implies [M(H_2O)_{n-1}L]^{2+} + H_2O$

 K_{f} varies along: $Ba^{2+} < Sr^{2+} < Ca^{2+} < Mg^{2+} < Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} > Zn^{2+}$

reflects electrostatic effects smaller metal with same charge = greater charge density

Based purely on electrostatics we would expect stabilities to vary as $Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} > Cu^{2+} > Zn^{2+}$

Exception: Cu²⁺ is actually more stable than Ni²⁺ and this is due to the <u>Jahn Teller Distortion</u>

Jahn-Teller Distortion – A Short Overview

CH3514

Occurs when you can asymmetrically fill orbitals that are degenerate in a non-linear complex. The geometry of the complex then distorts to reach a more stable electronic configuration

High spin d⁴ $t_{2g}^{3}e_{g}^{1}$ Low spin d⁷ $t_{2g}^{6}e_{g}^{1}$ or d⁹ $t_{2g}^{6}e_{g}^{3}$

Let's look at the case for LS d⁹ t_{2g}⁶e_g³

If there are 2e in d_{z2} and 1e in d_{x2-y2} then greater repulsion along the z-axis \therefore elongation of these M-L bonds along the z-axis to compensate, leading to stabilization of the d_{z2} orbital – most common distortion

Jahn-Teller Distortion – A Short Overview

CH3514

Occurs when you can asymmetrically fill orbitals that are degenerate in a non-linear complex. The geometry of the complex then distorts to reach a more stable electronic configuration

High spin d⁴ $t_{2g}^{3}e_{g}^{1}$ Low spin d⁷ $t_{2g}^{6}e_{g}^{1}$ or d⁹ $t_{2g}^{6}e_{g}^{3}$

Let's look at the case for LS d⁹ $t_{2g}^{6}e_{g}^{3}$

If there are 2e in d_{z2} and 1e in d_{x2-y2} then greater repulsion along the z-axis \therefore elongation of these M-L bonds along the z-axis to compensate, leading to stabilization of the d_{z2} orbital – most common distortion

If there are 2e in d_{x2-y2} and 1e in d_{z2} then greater repulsion along the xy-plane

 \therefore effective compression of the M-L bonds along the z-axis to compensate, leading to stabilization of the d_{x2-y2} orbital

Jahn-Teller Distortion – A Short Overview

CH3514

Occurs when you can asymmetrically fill orbitals that are degenerate in a non-linear complex. The geometry of the complex then distorts to reach a more stable electronic configuration Jahn-Teller active

Thermodynamics of metal complex formation The Impact of Jahn-Teller Distortion

85

CH3514

The presence of only **one electron** in the $d_{x^2-y^2}$ orbital strengthens the water ligand attraction in the equatorial plane due to lower e-e repulsion with the donor O electrons

The result is a raising in log K_{1-4} and a lowering in log K_5 and K_6 for water substitution compared to the two ions either side; Ni²⁺ (d⁸) and Zn²⁺ (d¹⁰) where there is no such extra stabilization

Let's now consider the situation when the ligand L replacing coordinated water possesses two donor atoms that lead to the formation of a **chelate** ring

Let's now consider the situation when the ligand L replacing coordinated water possesses two donor atoms that lead to the formation of a **chelate** ring

Values of log10 K1 for various L replacing water on [M(OH2)6]2+

The figure shows that the replacement of NH_3 on M^{2+}_{aq} by the chelates en and EDTA is thermodynamically favourable. 20 log10 K1 This is a general phenomenon called the chelate effect 15 The increase in log K_1 as chelate rings are 10 formed is a reflection of a more negative value of ΔG^{o}_{1} 5 It is largely due to an increase in the entropy of reaction i.e. ΔS_1° is large and positive 0 $\Delta G^{o}_{1} = \Delta H^{o}_{1} - T\Delta S^{o}_{1}$

CH3514

Let's look at a specific example: $Ca_{aq}^{2+} + EDTA^{4-}$

 $\Delta G_{1}^{\circ} = -60.5 \text{ KJ mol}^{-1}; \Delta S_{1}^{\circ} = 117 \text{ J mol}^{-1} \text{ K}^{-1}$

At 300 K, ΔH°_{1} = -25.4 KJ mol⁻¹ (ΔH°_{1} = ΔG°_{1} + T ΔS°_{1})

Therefore this complexation is mostly entropy driven ($T\Delta S_1^o = -35.1 \text{ KJ mol}^{-1}$) Though there is a favourable enthalpic term as well (HSAB and chelate effect).

Why entropy controlled? There is an increase in entropy due to release of 6 water molecules – increase in disorder of the system

CH3514

Let's look at a specific example: $Ca_{aq}^{2+} + EDTA^{4-}$

 $\Delta G_{1}^{o} = -60.5 \text{ KJ mol}^{-1}; \Delta S_{1}^{o} = 117 \text{ J mol}^{-1} \text{ K}^{-1}$

At 300 K, ΔH°_{1} = -25.4 KJ mol⁻¹ (ΔH°_{1} = ΔG°_{1} + T ΔS°_{1})

We can now calculate $K_1 as \Delta G^o{}_1 = -RT ln (K_1) log(K_1) = log (e^{-\Delta G1/RT}) = 10.53$

We can now add this point to the previous figure!

Let's look at a specific example: $Ca^{2+}_{aq} + EDTA^{4-}$

The figure shows that the replacement of NH_3 on M^{2+}_{aq} by the chelates en and EDTA is thermodynamically favourable.

This is a general phenomenon called the chelate effect

Values of log10 K1 for various L replacing water on [M(OH2)6]2+

CH3514

Let's look at another specific example: $[Ni(NH_3)_6]^{2+} + 3$ en

 $\Delta G_{1}^{\circ} = -57.2 \text{ KJ mol}^{-1}; \Delta H_{1}^{\circ} = -16.6 \text{ KJ mol}^{-1}; -T\Delta S_{1}^{\circ} = -36.1 \text{ KJ mol}^{-1}$

both enthalpy and entropy effects reinforce

The **enthalpic effect** on chelation from **en** arises from stronger bonds to the **N** donors of the chelate as a result of the formation of the ring

Let's look at another specific example where the enthalpy and entropy terms **do not** reinforce each other: Mg²⁺ + EDTA⁴⁻

 $\Delta G_{1}^{\circ} = -51.2 \text{ KJ mol}^{-1}; \Delta H_{1}^{\circ} = 13.8 \text{ KJ mol}^{-1}; -T\Delta S_{1}^{\circ} = -65.0 \text{ KJ mol}^{-1}$

Here the endothermic enthalpy term arises from the unfavourable replacement of two hard water ligands on the extremely hard Mg²⁺ by the softer N donors of EDTA⁴⁻ (HSAB).

Formation of the chelate is however still highly favoured due to the favourable entropy contribution

This begs the question why is Mg^{2+} harder than Ca^{2+} ?

 Mg^{2+} is smaller (charge more concentrated) than Ca^{2+} , which will reinforce the electrostatic interaction (Hard-Hard) interaction with H_2O

CH3514

We can also probe the effect of the nature of the donor atom on the binding strength to the metal.

CH3514

We can also probe the effect of the nature of the donor atom on the binding strength to the metal.

	M ^{2*} aq	H₂N	NHz	H ₂ N	- Contraction of the second se		\sim
			increasing	hardness —		→	
	T = 300K	∆H° ₁ kJ mol ⁻¹	-T∆S° ₁ kJ mol ⁻¹	∆Hº ₁ kJ mol ⁻¹	-T∆Sº ₁ kJ mol ⁻¹	∆H° ₁ kJ mol ⁻¹	-T∆S° ₁ kJ mol ⁻¹
increasing softness	Mn	-11.7	-3.8	-1.3	-16.9	+15.4	-34.2
	Fe	-21.3	-6.4	-	-	-	-
	Co	-28.9	-8.7	-11.7	-17.2	+12,1	-33.9
	Ni	-37.2	-10.8	-20.5	-14.9	+7.9	-31.5
Ţ	Cu	-54.4	-16.3	-25.9	-23.1	+11.9	-44.4
Y	Zn	-28.0	-8.4	-13.8	-15.9	+13.1	-35.1
		∆H° and terms r	-T∆Sº einforce	∆H° and terms r	-T∆Sº einforce	complexation entropy fav	on is voured only

Binding strength is also influenced by the number of d electrons on the metal (LFSE)

Values of log10 K1

Why does the ionic radius decrease along the period?

The decreasing metal ion radius along the period is a result of the poor shielding of the nuclear charge by the addition of the successive d-electrons

The d-orbitals do not penetrate into the nucleus because the d orbital wave function goes to zero before the nucleus is reached

The same phenomenon is seen in other properties of 3d-metal complexes

98

Chelation therapy has been used to treat diseases and conditions relating to metal overload

Wilson's disease is a recessive genetic disorder that causes epilepsy amongst other neurological symptoms and is due to an overload of copper

Chelating agents such as those below that bind Cu²⁺ ions strongly have been successfully used clinically to treat the condition

2+ log K1 = 20 CO₂H CO2H -2H

A Kayser-Fleischer ring

(highest amongst the 3d metals)

Chelation therapy has been used to treat diseases and conditions relating to metal overload

A potentially fatal condition called **hemosiderosis** occurs when the naturally occurring iron carrier protein **transferrin** becomes saturated and iron becomes deposited within the body.

In cases of severe iron overload, deposition in the heart, liver and endocrine systems leads to functional impairment of these organs, and reduced life expectancy.

Chelation therapy has been used to treat diseases and conditions relating to metal overload

A potentially fatal condition called **hemosiderosis** occurs when the naturally occurring iron carrier protein **transferrin** becomes saturated and iron becomes deposited within the body.

In cases of severe iron overload, deposition in the heart, liver and endocrine systems leads to functional impairment of these organs, and reduced life expectancy.

Chelation therapy has been used to treat diseases and conditions relating to metal overload

There exists other clinically proven agents for the removal of Fe³⁺ from the body

binds through deprotonated hydroxamate groups

Note the affinity of the hard Fe³⁺ for hard O donors

Chelation therapy has been used to treat diseases and conditions relating to metal overload There exists other clinically proven agents for the removal of Fe³⁺ from the body

Stabilities of Oxidation States

The higher states become more oxidising and the lower states less reducing to the right **Why?**

Due to the poor shielding of the nucleus by the addition of successive d-electrons, the effective positive charge felt by an outer electron increases from left to right.

This has two consequences:

- Decrease in ionic radius to the right.
- Valence electrons become harder to lose/share the more to the right you go.

- the higher oxidation states become more oxidizing and the lower states less reducing

But how do we truly define the term "oxidation state"?

In nomenclature terms this is done by assuming octet configurations to define the charge on the atoms attached to the metal in the ion or complex

Complex	Ligand Total Charge on Ligand		Overall Charge on Complex	Oxidation State of Metal
[Mn(OH ₂) ₆] ²⁺	H ₂ O	0	+2	Н
MnO ₄ -	O ²⁻	8-	-1	VII
[Fe(CN) ₆] ⁴⁻	CN⁻	6-	-4	П
[Co(NH ₃) ₄ (O ₂ CR)Cl] ⁺	NH ₃ RCO ₂ - Cl-	0 1- 1-	+1	III

In reality, oxidation states are a formalism and are only true if the M-L bonding is highly ionic (electrostatic).

e.g., $[Mn(OH_2)_6]^{2+}$ where Mn is truly is Mn^{2+}

(independent evidence exists from optical spectroscopy and magnetism that it is high spin d⁵)

Stabilities of Oxidation States

But what about the case of MnO_4^- where the Mn-O bonds are highly covalent (Mn-O bond length is less than sum of ionic radii)

So where now are the electrons?

Here optical spectroscopy and magnetism are less informative:

• spectra is dominated by $O \rightarrow Mn$ charge transfer bands

Quantification of Oxidizing and Reducing Strengths

We know that MnO_4^{-1} is a powerful oxidant and $[Cr(OH_2)_6]^{2+1}$ is a powerful reductant.

But how do we quantify oxidising and reducing strength?

The answer: Using a scale of standard redox potentials, E_o

These are best envisaged as part of an electrochemical cell – the driving force in a battery

Quantification of Oxidizing and Reducing Strengths

Consider the interaction of Cu²⁺/Cu and Zn²⁺/Zn in the Daniell Cell

CH3514

$$Cu^{2+}_{aq} + 2e^{-} \longrightarrow Cu(s) E^{\circ}_{Cu(II)/Cu}$$

This is made up of two half reactions:

The potential difference, E^o_{cell} is measured by the voltmeter

$$Zn^{2*}_{aq} + 2e^{-} = Zn(s) E^{\circ}_{Zn(II)/Zn}$$

$$E^{o}_{cell} = E^{o}_{reduction} - E^{o}_{oxidation} = E^{o}_{cathode} - E^{o}_{anode}$$

The potential difference, E^o_{cell} is defined as the standard cell potential under standard conditions:

- Unit activity (which means dilution solutions so activities approximate concentrations)
- 1 bar pressure of any gaseous component
- All solid components are in their standard states
- T = 298 K

 ΔG^{o}_{cell} = -nFE^o_{cell}

where F is the Faraday constant = 96487 C mol⁻¹ n is the number of electrons transferred in the reaction

For a cell reaction to be thermodynamically favourable ${\rm E^o}_{\rm cell}$ must be positive so that $\Delta {\rm G^o}_{\rm cell}$ is negative

CH3514

CH3514

CH3514

 E_{cell}^{o} at 298 K = 1.10 V There is +0.34 V driving the reaction due to reduction of Cu²⁺ There is +0.76 V driving the reaction due to oxidation of Zn(s)

Concernance of			17/152	
	Reduction Half-Reaction		E° (V)	
Stronger	F2(g) + 2 e ⁻	> 2 F (aq)	2.87	Weaker
oxidizing	H2O2(aq) + 2 H*(aq) + 2 e-	$\longrightarrow 2 H_2O(l)$	1.78	reducing
agent	MnO4*(aq) + 8 H*(aq) + 5 e*	$\longrightarrow Mn^{2*}(aq) + 4 H_2O(l)$	1.51	agent
	Cl ₂ (g) + 2 e ⁻	$\longrightarrow 2 \operatorname{CP}(aq)$	1.36	
T	Cr2O72*(aq) + 14 H*(aq) + 6 e	$\rightarrow 2 \operatorname{Cr}^{3*}(aq) + 7 \operatorname{H}_2O(l)$	1.33	
	O2(g) + 4 H*(aq) + 4 e*	$\longrightarrow 2 H_2O(l)$	1.23	
	$Br_2(l) + 2e^{-l}$	> 2 Br"(aq)	1.09	
	$Ag^{*}(aq) + e^{-}$	> Ag(s)	0.80	
	$Fe^{3+}(aq) + e^{-}$	→ Fe ² *(aq)	0.77	
	$O_2(g) + 2 H^*(aq) + 2 e^-$	\longrightarrow H ₂ O ₂ (aq)	0.70	
	$I_2(s) + 2 e^{-1}$	→ 2 l=(aq)	0.54	
	O2(g) + 2 H2O(l) + 4 e ⁻		0.40	
	Cu ^{2*} (aq) + 2 e ⁺	\longrightarrow Cu(s)	0.34	
	Sn4+(aq) + 2 e-	> Sm ²⁺ (aq)	0.15	
	2 H*(aq) + 2 e ⁻	\longrightarrow H ₂ (g)	0	
	Pb2+(aq) + 2e-	$\longrightarrow Pb(s)$	-0.13	
	Ni ²⁺ (aq) + 2 e ⁻	→ Ni(s)	-0.26	
	Cd2*(aq) + 2 e*	\longrightarrow Cd(s)	-0.40	
	$Fe^{2*}(aq) + 2e^{-1}$	\longrightarrow Fe(s)	-0.45	
	Zn ² *(aq) + 2 e ⁻	\longrightarrow Zn(s)	-0.76	
	2 H ₂ O(l) + 2 e*	\longrightarrow H ₂ (g) + 2 OH [*] (aq)	-0.83	
	Al ³ *(aq) + 3 e ⁻	→ Al(s)	-1.66	
Weaker	Mg2+(aq) + 2 e"	$\longrightarrow Mg(s)$	-2.37	Stronger
oxidizing	Na*(aq) + e*	> Na(s)	-2.71	reducing
agent	$Li^{*}(aq) + e^{-}$	> Li(s)	-3.04	agent

CH3514

Quantification of Oxidizing and Reducing Strengths

TABLE 18.1	Standard Reduction Potentials at 25°C			
	Reduction Half-Reaction		E° (V)	
Stronger oxidizing agent	F2(g) + 2 e*	→ 2 F (aq)	2.87	Weaker reducing agent
	H2O2(aq) + 2 H+(aq) + 2 e-	$\longrightarrow 2 H_2O(l)$	1.78	
	MnO4*(aq) + 8 H*(aq) + 5 e*	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(l)	1.51	
	Cl ₂ (g) + 2 e ⁻	$\longrightarrow 2 \operatorname{CP}(aq)$	1.36	
-	Cr2O72*(aq) + 14 H*(aq) + 6 e	$\rightarrow 2 \operatorname{Cr}^{3*}(aq) + 7 \operatorname{H}_2O(l)$	1.33	
	O2(g) + 4 H*(aq) + 4 e*	$\longrightarrow 2 H_2O(l)$	1.23	
	$Br_2(l) + 2 e^{-l}$	$\longrightarrow 2 Br(aq)$	1.09	
	Ag*(aq) + e-	$\longrightarrow Ag(s)$	0.80	
	$Fe^{3*}(aq) + e^{-1}$	+ Fe2*(aq)	0.77	
	1. (a)	12 640		

- 1. All values are relative to SHE (= reference electrode)
- Half-reactions are written as reductions (only reactants are oxidizing agents and only products are the reducing agents)
- 3. The more positive the E° the more readily the reaction occurs
- 4. Half-reactions are shown with equilibrium arrowa b/c each can occur as reduction or oxidation
- 5. The half-cell that is listed higher at the table acts as the cathode

	re (a) + 2e	$\rightarrow Fe(s)$	-0,45	
Weaker	Zm ²⁺ (aq) + 2 e ⁻	\longrightarrow Zn(s)	-0.76	
	2 H ₂ O(l) + 2 e ⁻	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	-0.83	
	AF*(aq) + 3 e*	$\longrightarrow Al(s)$	-1.66	
	Mg2+(aq) + 2 e*	$\longrightarrow Mg(s)$	-2.37	Stronger
	$Na^{*}(aq) + e^{*}$	\longrightarrow Na(s)	-2.71	reducing
agent	$Li^{*}(aq) + e^{-}$	\longrightarrow Li(s)	-3.04	agent

CH3514

 E_{cell}^{o} at 298 K = 1.10 V There is +0.34 V driving the reaction due to reduction of Cu²⁺ There is +0.76 V driving the reaction due to oxidation of Zn(s)

By combining the SHE with another half cell, e.g., $Cu^{2+}_{aq}/Cu(s)$, the E^o can be determined from the measured cell potential E^o_{cell}

We can then show:

$$Cu^{2+}_{aq} + 2e^{-} \longrightarrow Cu(s) = +0.34 V$$

 $Zn^{2+}_{aq} + 2e^{-} \longrightarrow Zn(s) = -0.76 V$

We can now see why Zn(s) readily reduces Cu^{2+}_{aq} and provides the huge driving force for the Daniell cell

$\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(aq) \rightarrow \operatorname{Zn}^{2+}(aq) + \operatorname{Cu}(s)$				
stronger	stronger	weaker	weaker	
reducing	oxidizing	oxidizing	reducing	
agent	agent	agent	agent	

Let's look at a different reaction. Let's consider the well known titration reaction of the reduction MnO_4^- with Fe^{2+}_{aq} under standard conditions (1 M H⁺, 298 K)

The half reactions are:

 $Fe^{3+}_{aq} + e^{-} = Fe^{2+}_{aq} = Fe^{2+}_{aq$

We can now see that from the relative E^0 values that the spontaneous reaction is:

$$E^{\circ}_{cell}$$

MnO_{4⁻aq} + 8 H⁺aq + 5 Fe²⁺aq \longrightarrow Mn²⁺aq + 5 Fe³⁺aq + 4 H₂O (I)

 $E^{o}_{cell} = E^{o}_{red} - E^{o}_{ox} = 1.51 - (+0.77) = 0.74 V$ $\Delta G^{o}_{cell} = -357.03 \text{ KJ mol}^{-1} \text{ (very favourable)}$

CH3514

Let's now look at a different process, which is the oxidation of Fe(s) by Cl_{2aq} .

The half reactions are:

$$Fe^{2+}_{aq} + 2e^{-} = Fe(s) = -0.44 V$$

$$Fe^{3+}_{aq} + 3e^{-} = Fe(s) = -0.04 V$$

$$Cl_{2aq} + 2e^{-} = 2Cl^{-}_{aq} = E^{\circ} = +1.36 V$$

These data indicate that two reactions are possible:

 $Cl_{2 qq} + Fe(s) = 2 Cl_{qq}^{-} + Fe_{qq}^{2+} = 41.80 V$ $3Cl_{2 qq} + 2 Fe(s) = 6 Cl_{qq}^{-} + 2 Fe_{qq}^{3+} = 41.40 V$

Both E^o_{cell} values are positive and from their magnitude one might suppose the first reaction is favoured over the second...

But what really counts is ΔG^{o}_{cell}

Can show that the second reaction is favoured by consider the ΔG^{o}_{cell} values for the two processes, which take into account the number of electrons involved

$$Cl_{2 aq} + Fe(s) = 2 Cl_{aq} + Fe^{2+}_{aq} = E^{\circ}_{cell} = +1.80 V$$

$$\Delta G^{\circ}_{cell} = -n F E^{\circ}_{cell} = -2 \times 96487 \times 1.80 = -347 \text{ kJ mol}^{-1}$$

$$3Cl_{2 aq} + 2 Fe(s) = 6 Cl_{aq}^{-} + 2 Fe^{3+}_{aq} = E^{\circ}_{cell} = +1.40 V$$

$$\Delta G^{\circ}_{cell} = -n F E^{\circ}_{cell} = -6 \times 96487 \times 1.40 = -810 \text{ kJ mol}^{-1}$$

Therefore second reaction favoured by ~ 500 kJ mol⁻¹!

So far we have been looking at systems under standard conditions. What happens if we change the pH?

 1^{st} example: Reduction of MnO₄⁻

 $MnO_{4_{q}}^{-} + 8 H_{q}^{+} + 5 e^{-} = Mn^{2_{q}} + 4 H_{2}O(I) E^{\circ} = +1.51 V$

Here E° refers to the condition $[H^+] = 1$ mol dm⁻³, pH = 0 Because of the consumption of H⁺ ions, the above E° will vary with pH.

What would be the measured E value for the above at pH 2.5 at 298K?

Quantification of Oxidizing and Reducing Strengths The Nernst Equation

So E drops as pH increases!

We can calculate E under any conditions using the Nernst Equation

oxidant + n e⁻ + y H⁺ reductant $E = E^{\circ} - \frac{R T}{n F} ln \left(\frac{[reductant]}{[oxidant][H^{+}]^{\gamma}} \right)$ measured standard n F For the reduction of MnO_4^{-} : E = 1.51 - $\frac{R}{n} \frac{T}{F} \ln \left(\frac{[Mn^{2+} aq]}{[MnO_4^{-1}][H^+]^8} \right)$ measured At pH = $2.5 = -\log_{10}([H^+])$; [H⁺] = 3.2×10^{-3} M: E = $1.51 - \frac{8.314 \times 298}{5 \times 96487} \ln \left(\frac{[Mn^{2+}_{aq}]}{[MnO_4^{-}][3.2 \times 10^{-3}]^8} \right)$ At equilibrium $[Mn^{2+}_{aq}] = [MnO_4^{-}]$ and $E = E_{eq}$

 E_{eq} = 1.51 - 5.13 × 10⁻³ ln (9.09 × 10¹⁹) = 1.27

So far we have been looking at systems under standard conditions. What happens if we change the pH?

2nd example: Reduction of Zn^{2+}_{aq} pH 0 pH 14 Zn^{2+}_{aq} + 2 e⁻ Zn(s) -0.76 V -1.20 V

No [H⁺] consumption here – so why the change?

The reason is that at pH 0 the Zn^{2+} species is $[Zn(OH_2)_6]^{2+}$

```
but at pH 14 the species is [Zn(OH)_4]^{2-1}
```

So the Zn²⁺ species being reduced is different!

So far we have been looking at systems under standard conditions. What happens if we change the pH?

 3^{rd} example: Mn^{3+}/Mn^{2+}_{aq} – an example where pH affects redox behaviour

At **pH 0**: Mn³⁺ exists as $[Mn(OH_2)_6]^{3+}$ and can oxidise $H_2O \rightarrow O_2$

$$[Mn(OH_2)_6]^{3+} + e^{-} = 1.54 V$$

$$O_2 + 4H^+ + 4e^{-} = 2H_2O \qquad E^\circ = +1.23 V$$

 $E_{cell}^{o} = 1.54 - 1.23 = 0.31 V$ (favourable)

 ΔG^{o}_{cell} = -nFE $^{o}_{cell}$ = -4*96487*0.31 J mol⁻¹ = -120 KJ mol⁻¹

So far we have been looking at systems under standard conditions. What happens if we change the pH?

 3^{rd} example: Mn^{3+}/Mn^{2+}_{aq} – an example where pH affects redox behaviour

At **pH 14**: Mn^{III} and Mn^{II} are now present as the hydroxo complexes; Mn(OH)_{2/3}(s) $Mn(OH)_3(s) + e^- \longrightarrow Mn(OH)_2(s) + OH_{aq}^- E^\circ = -0.27 V$ $O_2 + 2H_2O + 4e^- \longrightarrow 4OH_{aq}^- E^\circ = +0.40 V$ $[OH^-] = 1 \text{ mol dm}^{-3}$, pH = 14 Now O_2 is the oxidant and $E^\circ_{cell} = 0.4 - (-0.27) = 0.67 V$ (favourable)

 ΔG^{o}_{cell} = -nFE $^{o}_{cell}$ = -4*96487*0.67 J mol⁻¹ = -259 KJ mol⁻¹

When several oxidation states exist for a particular metal a convenient method of representing the respective E^o values is in the form of a Latimer diagram

Using ΔG° values can show using the above that $E^{\circ}(Fe^{3+}_{aq}/Fe(s)) = -0.04 V$

+6 +3 +2 0

$$FeO_4^{2-}(aq)$$
 $Fe(OH)_3(s)$ $Fe(OH)_2(s)$ $Fe(s)$
 $| +0.81$ | -0.86 | -0.89 | $PH = 14$

Recall Hess's Law: $\Delta G_{\text{overall}} = \Sigma \Delta G_{\text{individual steps}}$

When several oxidation states exist for a particular metal a convenient method of representing the respective E^o values is in the form of a Latimer diagram With multiple Latimer diagrams, one can illustrate the change in E^o with pH

2nd example: Manganese

CH3514

When several oxidation states exist for a particular metal a convenient method of representing the respective E^o values is in the form of a Latimer diagram With multiple Latimer diagrams, one can illustrate the change in E^o with pH

When a given oxidation state has a higher (more positive) E^o for its **reduction** than for its oxidation it is thermodynamically unstable to disproportionation to give the two oxidation states either side.

One can show ΔG^o for this process is negative

Do any of the species above satisfy this criterion? YES

CH3514

When several oxidation states exist for a particular metal a convenient method of representing the respective E^o values is in the form of a Latimer diagram With multiple Latimer diagrams, one can illustrate the change in E^o with pH

2nd example: Manganese

Let's have a closer look:

When a given oxidation state has a higher (more positive) E^o for its **reduction** than for its oxidation it is thermodynamically unstable to disproportionation to give the two oxidation states either side.

One can show $\Delta {\rm G}^{\rm o}$ for this process is negative

Do any of the species above satisfy this criterion? YES

In this case: MnO_4^{2-} and Mn^{3+} in the form of $Mn(OH)_3(s)$, are now stable towards disproportionation

CH3514

A Pourbaix Diagram condenses the information available in Latimer Diagrams across all pH ranges.

Quantification of Oxidizing and Reducing Strengths Frost-Ebsworth Diagrams

A convenient way of representing redox behaviour is to graphically plot ΔG^o versus the oxidation number

```
Recall that \Delta G^{\circ} = -n F E^{\circ}The FE diagrams can be used to predict redox behaviourSo \Delta G^{\circ}/F = -nE^{\circ}
```

So if we plot nE° vs oxidation number then the slope of the line drawn between two oxidation states, separation n, will give E° for that process.

Quantification of Oxidizing and Reducing Strengths Frost-Ebsworth Diagrams

CH3514

Example 1: Mn at pH 0

Housecroft and Sharpe, page 227-230

131

Housecroft and Sharpe, page 227-230

oxidation state

Quantification of Oxidizing and Reducing Strengths Frost-Ebsworth Diagrams

CH3514

Example 1: Mn at pH 0 and pH 14

We can also illustrate the effects of pH on the redox behaviour

Quantification of Oxidizing and Reducing Strengths Frost-Ebsworth Diagrams

CH3514

Which pH condition is best for MnO_4^- titrations?

$pH = 0$ Use of acid solution avoids $MnO_2(s)$ production	E° / V	G° / kJ mol ⁻¹
$MnO_{4_{aq}}^{-} + 8 H_{aq}^{+} + 5 e^{-} - Mn^{2_{aq}}^{+} + 4 H_2O(1)$	+ 1.51	-728.5
$MnO_{4_{aq}}^{-} + 4H_{aq}^{+} + 3e^{-} - MnO_{2}(s) + 2H_{2}O(l)$	+ 1.69	-489.2
Note in air (O ₂)	Reduction	n to Mn ²⁺ aq favoured
$O_2 + 2 Mn^{2+}_{aq} + 2 H_2 O = 2 MnO_2(s) + 4 H^{+}_{aq}$	0.0	0
pH = 14	. 0.24	161
$M(10_{4 aq} + 4H_20 + 5e) - M(1(0H)_2(5) + 00H_{aq})$	+ 0.54	-104
$MnO_{4_{aq}}^{-} + 2H_{2}O + 3e^{-} = MnO_{2}(s) + 4OH_{aq}^{-}$	+ 0.59	-170.8
Note in air (O ₂)	Reduction	n to MnO ₂ favoured
$O_2 + 2 Mn(OH)_2(s) = 2 MnO_2(s) + 2 H_2O$	+ 0.44	-169.8

Quantification of Oxidizing and Reducing Strengths Frost-Ebsworth Diagrams along the 3d Series

CH3514

135

Quantification of Oxidizing and Reducing Strengths Frost-Ebsworth Diagrams along the 3d Series

CH3514

Note that copper is the first truly inert 3d metal (all E^o values are positive – typical of coinage metals

- Cu is the only 3d metal found naturally
- Cu⁺_{aq} is unstable WRT disproportionation

oxidation state

CH3514

Quantification of Oxidizing and Reducing Strengths

$$M^{2+}_{aq} + 2 e^{-} \longrightarrow M(s)$$

consists of the three processes:

CH3514

Quantification of Oxidizing and Reducing Strengths

 $M^{2+}_{aq} + 2 e^{-}$ M(s)

The expected variation of ΔH^{o}_{hyd} with LFSE (forming the aqua complexes) does not contribute significantly.

The low E^o for Zn²⁺/Zn does correlate however with an unusually low value of ΔH^{o}_{a} for Zn(s)

Furthermore, $E^{o}(M^{3+}/M^{2+})$ correlates with IP_{3}

Once again the variation in respective $\Delta {\rm H^o}_{hyd}$ values of M^{2+} and M^{3+} is not significant

Furthermore, $E^{o}(M^{3+}/M^{2+})$ correlates with IP_{3}

Once again the variation in respective $\Delta {\rm H^o}_{\rm hyd}$ values of M^{2+} and M^{3+} is not significant

IE / kJ mol-1 We find that the values of E° (M³⁺/M²⁺) correlate with IP₃ except for Cr - 3250 E° (M3+/M2+) / volts On the basis of IP_3 , oxidation of $Cr^{2+}(g)$ should be more difficult than with V²⁺ (g) by ca. 165 KJ mol⁻¹ 2750 Yet Cr^{2+}_{aq} is a more powerful reductant (more negative E^o) than V²⁺_{aq} WHY? The reason is the considerable gain in LFSE (0.6 $\Delta_{\rm o})$ on forming the d³ Cr³⁺ ion $(t_{2g}^{3} e_{g}^{0} configuration)$ Oxidation of V^{2+}_{aq} to V^{3+}_{aq} ($t_{2g}^{-3} e_g^{-1}$ configuration) actually results in a loss of LFSE of 0.4 Δ_{o} compared to V²⁺_{aq} In this case LFSE factors are significant⁹ 10 number of d electrons for M²⁺

Furthermore, $E^{o}(M^{3+}/M^{2+})$ correlates with IP_{3}

Once again the variation in respective $\Delta {\rm H^o}_{\rm hyd}$ values of ${\rm M^{2+}}$ and ${\rm M^{3+}}$ is not significant

In summary, E^{o} values in solution largely correlate with the relevant ionization potential, IP_{n}

Only in certain extreme cases do LFSE factors play a significant part e.g., $Cr^{2+}_{aq}/Cr^{3+}_{aq}$

CH3514

Rates of Reactions Involving 3d Transition Metal Ions in Aqueous Solution

Kinetics versus thermodynamics – do they correlate?

CH3514

Consider the following process:

This is one of the largest log β_n values known for a monodentate ligand replacing H₂O

What this means is that $[Ni(CN)_4]^{2-}$ is very stable thermodynamically

CH3514

Consider the rate of the reaction for the following process:

$$[Ni(CN)_{4}]^{2-} + *CN^{-} \xrightarrow{k} [Ni(*CN)(CN)_{3}]^{2-} + CN^{-}$$

exchange of CN⁻ ligand
$$k = 2.3 \times 10^{6} M^{-1} s^{-1}$$

- representing an exchange event every microsecond!!!

What this means is that $[Ni(CN)_4]^{2-}$ is very **labile**!

These experiments show that **thermodynamic stability** does not necessarily correlate with **kinetic inertness**

The attainment of equilibrium in metal ion complexation processes can be an extremely fast process; irrespective of the size of the stability constants: K_n or β_n

In fact ms and μ s timescale ligand exchange events involving monodentate ligands are common within 3d transition metal complexes

A wide range of rates is relevant for ligand exchange reactions at metal complexes

Consider water exchange on the aqua species

For main group metal ions these range from the most labile $(Cs^+_{aq}, half life = 1 ns)$ to the most inert $(Al^{3+}_{aq}, half life = 1 s) - 9$ orders of magnitude

This is mostly as a result of variations in the metal ionic radius which affects the strength of the predominantly ionic (electrostatic) bonding to the coordinated waters

	Group 2 aqua ions	Ionic radius / pm	Water exchange half life / s
igodol	[Be(OH ₂) ₄] ²⁺	27	10 ⁻²
	[Mg(OH ₂) ₆] ²⁺	72	10 ⁻⁵
	[Ca(OH ₂) ₇] ²⁺	105	10 ⁻⁷
	[Ba(OH ₂) ₈] ²⁺	142	10 ⁻⁹

A wide range of rates is relevant for ligand exchange reactions at metal complexes

Consider water exchange on the aqua species

For main group metal ions these range from the most labile $(Cs^+_{aq}, half life = 1 ns)$ to the most inert $(Al^{3+}_{aq}, half life = 1 s) - 9$ orders of magnitude

This is mostly as a result of variations in the metal ionic radius which affects the strength of the predominantly ionic (electrostatic) bonding to the coordinated waters

Group 13 aqua io		Ionic radius / pm	Water exchange half life / s	
	[Al(OH ₂) ₆] ³⁺	54	1	
	[Ga(OH ₂) ₆] ³⁺	62	10-3	
	[In(OH ₂) ₆] ³⁺	80	10 ⁻⁶	

A wide range of rates is relevant for ligand exchange reactions at metal complexes

Consider water exchange on the aqua species

However for the 3d transition metal ions size is not the only factor

Here there is no correlation with size V²⁺ has the largest radius but it is the <u>most inert</u> The half lives (**rates**) of exchange, just like the stability constants we saw earlier, **correlate** with **LFSE** not size

3d aqua ions		Ionic radius / pm	Water exchange half life / s	
	[V(OH ₂) ₆] ²⁺	79	10-2	
	[Co(OH ₂) ₆] ²⁺	75	10 ⁻⁶	
	[Ni(OH ₂) ₆] ²⁺	69	10-4	

CH3514

Values of log k_{ex} (water exchange) for M^{2+} ions along the 3d series The anomalously high rates for Cr^{2+}_{aq} and Cu^{2+}_{aq} reflect the rapid dynamics attached to the weakly-bonded water ligands within the Jahn-Teller Jahn-Teller distorted structures

d electron number

CH3514

Amazingly, the rates of water ligand exchange on aqua metal ions across the periodic table cover <u>20</u> orders of magnitude

CH3514

Amazingly, the rates of water ligand exchange on aqua metal ions across the periodic table cover 20 orders of magnitude

Generally,

Lower charge: faster; Higher charge: slower Larger size: faster; smaller size: slower

water ligand residence time (= $1/k_{ex}$)

Amazingly, the rates of water ligand exchange on aqua metal ions across the periodic table cover <u>20</u> orders of magnitude

Let's put this into perspective

		average time interval at 25°C before water exchange event		
	On Cu ²⁺ _{aq}	1 ns – 10 ⁻⁹ s		
	On Al ³⁺ _{aq}	0.1 s - 10 ⁻¹ s	giucose	
crayon	On Cr ³⁺ _{aq}	1 day – 86 400 s	All	
	On Ir ³⁺ _{aq}	50 years – 1.58 x 10 ⁹ s	490 A91 Join A915	
			Kiesedae antoin M876	

~40% from the Earth to Moon

~ St Andrews to Edinburgh

Could envisage studying the exchange on Cr^{3+}_{aq} without problem but what about that on Ir^{3+}_{aq} ?

So how was the exchange on Ir^{3+}_{aq} measured ?

Since water exchange involves bond breaking from Mⁿ⁺ to resident water, which has an endothermic activation barrier of about 130 kJ mol⁻¹, raising the temperature will speed up the reaction

water exchange on $[Ir(H_2O)_6]^{3+}$ was studied in pressurized vessels at $\underline{120^{\circ}C}$ – an event occurs now in less than 1 hour – we can follow by NMR using enriched ¹⁷O-labelled water (¹⁷O has an NMR signal like ¹H)

Classification for exchange reactions on metal ions			
τ < 1 min	labile		
τ > 1 min	inert		

CH3514

156

CH3514

Of all the 3d transition metal aqua ions only Cr^{3+}_{aq} is classed as inert – why?

Octahedral $[Cr(H_2O)_6]^{3+}$ has a high charge coupled with a very stable t_{2g}^{-3} configuration with $-1.2\Delta_o$ of LFSE

High LFSE correlates with a high ligand field activation energy (LFAE) for exchange

CH3514

Of all the 3d transition metal aqua ions only Cr^{3+}_{aq} is classed as inert – why?

Octahedral $[Cr(H_2O)_6]^{3+}$ has a high charge coupled with a very stable t_{2g}^{-3} configuration with $-1.2\Delta_o$ of LFSE

number of d electrons

CH3514

Of all the 3d transition metal aqua ions only Cr^{3+}_{aq} is classed as inert – why?

Octahedral $[Cr(H_2O)_6]^{3+}$ has a high charge coupled with a very stable t_{2g}^{-3} configuration with $-1.2\Delta_o$ of LFSE

number of d electrons

Low spin octahedral $[Co(H_2O)_6]^{3+}$ has a high charge (high Δ_o) coupled with a t_{2g}^{6-6} configuration and therefore has the maximum LFSE possible of -2.4 Δ_o

So Co³⁺ has a very high LFAE and should be kinetically inert

But how do we know that octahedral $[Co(H_2O)_6]^{3+}$ has a low spin t_{2g}^{-6} configuration? The complex could be high spin.

So Co³⁺ would then have a LFSE of only -0.4 $\Delta_{\rm o}$

So how do we know?

Of course we could look at the magnetic properties but we can also tell from the M-OH₂ distances in the aqua complexes

The rate of exchange on $[Co(OH_2)_6]^{3+}$ has not been measured however because it is **not** stable

 $[Co(OH_2)_6]^{3+}$ spontaneously oxidizes water to O₂

 $[Co(OH_2)_6]^{3+} + e^{-} \longrightarrow [Co(OH_2)_6]^{2+} E^{\circ} = +1.98 V$ $O_2 + 4H^+ + 4e^{-} \longrightarrow 2H_2O \qquad E^{\circ} = +1.23 V$ $\Delta G^{\circ}_{cell} = -nFE^{\circ}_{cell} = -4*96487*0.75 = -386 \text{ KJ mol}^{-1}$

The exchange reaction observed is catalysed by the more labile $[Co(OH_2)_6]^{2+}$ generated

 $[Co(OH_2)_6]^{3+}$ provides another good example of the lack of correlation between thermodynamic stability and kinetic lability

 $Co(OH_2)_6]^{3+}$ is inert yet only metastable

Literally hundreds of stable Co³⁺ complexes are known with ligands other than water, most of them N-donor ligands.

Because of their redox stability, coupled with slow rates of ligand exchange, many of these have played a huge role in developing our understanding of the mechanisms of reactions at transition metal centres

Literally hundreds of stable Co³⁺ complexes are known with ligands other than water, most of them N-donor ligands.

Because of their redox stability, coupled with slow rates of ligand exchange, many of these have played a huge role in developing our understanding of the mechanisms of reactions at transition metal centre

Why this huge difference in E^o values ? with Co^{III} stabilized hugely with N-donors like NH₃

Why this huge difference in E^o values ?

167

Why this huge difference in E° values ?

CH3514

Why this huge difference in $E^{\rm o}\xspace$ values ?

CH3514

There are only two known high spin Co³⁺ complexes:

- $[Co(OH_2)_3F_3]$
- [CoF₆]³⁻

This is due to good π -donation from F⁻, which dramatically decreases Δ_{o}

All other Co complexes are low spin, which is due to stronger σ -donation outweighing all other effects

You all are familiar with substitution reactions on carbon: $S_N 1$ and $S_N 2$

There exists comparable mechanisms of ligand replacement on the metal

- Dissociative similar to S_N1
- Associative similar to S_N2

CH3514

The Associative path:

M-Y bond forms first followed by de-coordination of X

Which path would you predict to have the **largest** activation energy?

Answer: The dissociative path. Why?

This mechanism involves a bond-breaking step (M-X bond) in the RDS, which will be endothermic before the new bond is formed – formally two step reaction

Similarly, $S_N 1$ reactions are frequently slower than $S_N 2$ reactions for the same reason

The associative path involves a bond-making step (M-Y), which will be exothermic prior to bond breaking (M-X) and so should possess a lower activation energy.

Additionally, the presence of the new M-Y bond may lower to energy required to break the M-X bond

The activation energy E_a can be determined from the temperature dependence of the reaction rate according to the Arrhenius or Eyring equation.

The Arrhenius equation:

$$\ln k = \ln A - \frac{E_a}{RT} \quad \text{or} \quad k = A e^{\left(\frac{-E_a}{RT}\right)}$$

The Eyring equation:

$$\ln k = \ln \left(\frac{k' T}{h}\right) - \frac{\Delta G}{RT} \qquad \text{or} \quad k = \left(\frac{k' T}{h}\right) e^{\left(\frac{\Delta G}{RT}\right)}$$

k' and h are the Boltzmann and Planck's constants

CH3514

The Eyring equation, rearranging gives

$$\ln k = \ln \left(\frac{k' T}{h}\right) - \frac{\Delta G^{\ddagger}}{RT} \longrightarrow \ln k = \ln T + \ln \left(\frac{k'}{h}\right) - \frac{\Delta G^{\ddagger}}{RT}$$
$$\longrightarrow \ln \left(\frac{k}{T}\right) = -\frac{\Delta G^{\ddagger}}{RT} + \ln \left(\frac{k'}{h}\right)$$

Recall that $\Delta G^{\ddagger} = \Delta H^{\ddagger} - T \Delta S^{\ddagger}$

so
$$ln\left(\frac{k}{T}\right) = -\frac{\Delta H}{RT}^{\ddagger} + \frac{\Delta S}{R}^{\ddagger} + ln\left(\frac{k'}{h}\right)$$

We can therefore make an Eyring plot of ln (k/T) vs 1/T and should obtain a linear relationship

CH3514

This energy diagram represents a concerted reaction without intermediates

This energy diagram represents a two-step reaction with an intermediate

Let's look at the difference between associative and dissociative processes

Let's look at some examples Water exchange on aqua metal ions

	Metal ion	d ⁿ config	Mechanism	ΔH^{\ddagger} kJ mol ⁻¹	ΔS^{\ddagger} J K ⁻¹ mol ⁻¹
increasing	[V(H ₂ O) ₆] ²⁺	$t_{2g}^{3} e_{g}^{0}$	associative	62	~0
e _g occupancy ↓	[Mn(H ₂ O) ₆] ²⁺	$t_{2g}^{3} e_{g}^{2}$	associative	33	+6
increasing	[Fe(H ₂ O) ₆] ²⁺	$t_{2g}^{4}e_{g}^{2}$		41	+21
t _{2g} occupancy	[Co(H ₂ O) ₆] ²⁺	$t_{2g}^{5}e_{g}^{2}$	dissociative	46	+37
¥	[Ni(H ₂ O) ₆] ²⁺	$t_{2g}^{6} e_{g}^{2}$	V	57	+32

- Increasing e_g occupancy leads to higher lability (smaller ΔH^{\ddagger}) but doesn't change the mechanism
- Increasing t_{2g} occupancy correlates with an increase in ΔH^{\ddagger} and a more positive ΔS^{\ddagger} and leads to dissociative behaviour

Let's look at some examples Water exchange on aqua metal ions

	Metal ion	d ⁿ config	Mechanism	ΔH^{\ddagger} kJ mol ⁻¹	ΔS^{\ddagger} J K ⁻¹ mol ⁻¹	LFSE units of _o
increasing e _g occupancy v	[V(H ₂ O) ₆] ²⁺	$t_{2g}^{3}e_{g}^{0}$	associative	62	~0	-1.2
	[Mn(H ₂ O) ₆] ²⁺	$t_{2g}^{3} e_{g}^{2}$	associative	33	+6	0
increasing † _{2g} occupancy	[Fe(H ₂ O) ₆] ²⁺	$t_{2g}^{4}e_{g}^{2}$	increasingly dissociative	41	+21	-0.4
	[Co(H ₂ O) ₆] ²⁺	$t_{2g}^{5}e_{g}^{2}$		46	+37	-0.8
,	[Ni(H ₂ O) ₆] ²⁺	$t_{2g}^{6} e_{g}^{2}$	↓	57	+32	-1.2

- ΔH^{\ddagger} correlates with LFSE, which is a measure of the strength of the M-OH₂ bond
- However, ΔH^{\ddagger} is of limited use as a mechanistic indicator

We saw previously that k_{ex} correlates with LFSE We can now deduce that k_{ex} correlates with ΔH^{\ddagger} This is entirely expected as, regardless of mechanism, there will be a bond-breaking event along the reaction coordinate (most endothermic step of the reaction, most impacting the rate) $10 - |c_{e^{2+}}|$

d electron number

Let's look at some examples Water exchange on aqua metal ions

	Metal ion	d ⁿ config	Mechanism	ΔH^{\ddagger} kJ mol ⁻¹	$\Delta S = \frac{1}{3}$ J K ⁻¹ mol ⁻¹	LFSE units of o
increasing e _g occupancy v	[V(H ₂ O) ₆] ²⁺	$t_{2g}^{3}e_{g}^{0}$	associative	62	~0	-1.2
	[Mn(H ₂ O) ₆] ²⁺	$t_{2g}^{3} e_{g}^{2}$	associative	33	+6	0
increasing † _{2g} occupancy	[Fe(H ₂ O) ₆] ²⁺	$t_{2g}^{4} e_{g}^{2}$	increasingly dissociative	41	+21	-0.4
	[Co(H ₂ O) ₆] ²⁺	$t_{2g}^{5}e_{g}^{2}$		46	+37	-0.8
	[Ni(H ₂ O) ₆] ²⁺	$t_{2g}^{6} e_{g}^{2}$	¥	57	+32	-1.2

- ΔS^{\ddagger} to a certain extent correlates with with the mechanistic trend BUT this value is prone to large errors based on the mathematical extrapolation to infinite T
- Is there another parameter available that we can use as an indicator of the mechanistic pathway?
 YES

The activation volume: ΛV^{\dagger} Consider the two pathways again:

- The dissociative process with have a ٠ positive ΔV^{\ddagger}
- The increase in ΔV^{\dagger} corresponds to the ٠ volume of free X

- The associative process with have a ٠ negative ΔV^{\ddagger}
- The decrease in ΔV^{\dagger} corresponds to the • volume of free Y

How do we measure ΔV^{\ddagger} ?

From the pressure dependence of the reaction rate:

Ρ

Housecroft and Sharpe, page 883

We can now appreciate why various mechanisms would have such rate/pressure dependencies

A **dissociative** process involves the expulsion of the leaving ligand X (expansive) so would be expected to be retarded by applying pressure negative slope - positive activation volume

An **associative** process involves the take up of Y (compressive) so would be expected to be accelerated by applying pressure positive slope - negative activation volume

Let's go back to the previous example:

	Metal ion	d ⁿ config	Mechanism	ΔH^{\ddagger} kJ mol ⁻¹	$\Delta s^{\mbox{\ddagger}}$ J K ⁻¹ mol ⁻¹	ΔV^{\ddagger} cm ³ mol ⁻¹
increasing e _g occupancy v	[V(H ₂ O) ₆] ²⁺	$t_{2g}^{3}e_{g}^{0}$	associative	62	~0	-4.1
	[Mn(H ₂ O) ₆] ²⁺	$t_{2g}^{3}e_{g}^{2}$	associative	33	+6	-5.4
increasing † _{2g} occupancy	[Fe(H ₂ O) ₆] ²⁺	$t_{2g}^{4}e_{g}^{2}$	increasingly dissociative	41	+21	+3.7
	[Co(H ₂ O) ₆] ²⁺	$t_{2g}^{5}e_{g}^{2}$		46	+37	+6.1
La construction de la constructi	[Ni(H ₂ O) ₆] ²⁺	$t_{2g}^{6} e_{g}^{2}$	¥	57	+32	+7.2

- ΔV^{\ddagger} is a good indicator of mechanism
- Increase in e_g occupancy lowers ∆H[‡] but doesn't change the mechanism

 still associative
- Increase in t_{2g} occupancy **increases** $\Delta H^{\ddagger} AND$ gives positive values for ΔV^{\ddagger} – more **dissociative**

We can understand these trends from an MO perspective

Increasing e_g occupancy weakens (lengthens) the resident M-OH₂ bonds – lowers LFSE and ΔH^{\ddagger} and increases the rate of exchange

However, increasing t_{2g} occupancy will repel the electrons on the entering ligand Y - facilitating the **dissociative** pathway

Summary

CH3514

- ✓ LFT and in particular σ-donor, π-donor and π-acceptors and how they influence $Δ_o$
- ✓ Hydrolysis chemistry of metal complexes
- ✓ Thermodynamics of metal complex formation (K, β , Δ G_o)
- ✓ HSAB chemistry
- $\checkmark\,$ The origins of the Irving-Williams Series and the JT effect
- ✓ The chelate effect
- \checkmark The factors governing the stabilities of oxidation states
- ✓ Quantification of oxidizing and reducing strength by electrochemistry (E^{o}_{cell} , ΔG^{o}_{cell})
- $\checkmark\,$ Delineation between thermodynamic stability and kinetic inertness

